	Q.P. Code: 20ME0315		R2	0
	Reg. No:	UTTU	ł	
	(AUTONOMOUS) B.Tech II Year I Semester Regular & Supplementary Examinations M HEAT & MASS TRANSFER	larch-2	023	
	(Agricultural Engineering) Time: 3 hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max. M	arks: 6	0
1	UNIT-I Derive the general heat conduction equation in Cylindrical coordinate System. OR	C01	L3	12M
2	a Define the following Terms. i) Heat ii) Heat Transfer	CO1	L1	6 M
	b Enumerate the some important areas which are covered under the discipline of heat transfer.	C01	L1	6M
3	a Derive an expression for heat conduction through a plane wall.	CO2	L1	6M
	b Calculate the critical radius of insulation for asbestos ($k = 0.172$ W/mK) surrounding a pipe and exposed to room air at 300K with $h = 2.8$ W/mK. Calculate the heat loss from a 475K, 60 mm diameter pipe when covered with the critical radius of insulation and without insulation.	CO2	L4	6M
4	 OR a Write short note on transient heat conduction. b A steel ingot (large in size) heated uniformly to 7450C is hardened by quenching it in an oil both maintained at 200C. Determine the length of time required for 	CO2	L1	6M
	the temperature to reach 5950C at a depth of 12 mm. The ingot may be approximated as a flat plate. For steel ingot take α (thermal diffusivity) = 1.2x10-5 m2/s.	CO2	L4	6M
5	UNIT-III Explain hydrodynamic and thermal boundary layer with reference to flow over flat plate.	CO3	L1	12M
6	a Define Nusselt number, Prandtl number and their significance.	CO3	L1	6M
	 b Air stream at 24°C is flowing at 0.4 m/s across a 100 W bulb at 130°C. If the bulbis approximately by a 65 mm diameter sphere. Calculate i) The heat transfer rate ii) The percentage of power lost due to convection 	CO3	L4	6M
7	Explain briefly the various regimes of saturated pool boiling with diagram.	CO 4	L3	12M
8	 a Explain the concept of black body b Explain the surface emissive properties 	CO4 CO4	L3 L4	6M 6M
9	The flow rate of hot and cold water streams running through a parallel flow heat evaluation are $0.2 \log a$ and $0.5 \log a$ respectively. The inlet temperatures on the het	C05	L4	12M
	and cold sides are 750C and 200C respectively. The exit temperatures on the not			
	450C. If the individual heat transfer coefficients on the both sides are 650 W/m20C, calculate the area of heat exchanger.			
10	a Explain correlation for Mass Transfer.	CO6	L.2	8M
	b List out the application of Mass Transfer. *** END ***	CO6	L2	4M

	Define the following Lange.	
	Definitionale the source important areas which are constant under the discipline of	
	A steel inget (large in size) heated uniformity to 7450C is fundance by quanching	
	Ale shears at 21°C is Bowing at 0.4 and across a 100 W bulb of 130°C. If the	

solutates and 0.2 light and 0.5 tops respectively. The test range ontool on the bot of end enter as \$600 and 2000 waveconcly. The exit temperature of het water as \$500 If the individual Real transfer onefficients on the both sides are 650 Winn2RC alculate the area of hesterscharzen

3403

a Explain constation for Mass Transfer
 b List out the noglicement of Mass Transfer

L'to L'onsti